Jeff Connelly

13 December 2002

AP CS P1

Ch13 Extra Credit: Operator Overloading

Like most practical programming languages, C++ allows operators to be used as syntactical sugar for regular functions. C++ treats operators and functions nearly identically in declaration and implementation, but operators are invoked in their own convenient way. Infix operators such as operator+(a, b) are called as “a + b”, while unary operators such as operator-(a) are called as “-a”. Additionally, a ternary operator, ?:, exists which is called as “a ? b : c”. Operators are unnecessary—“a + b” could be written “a.add(b)”, but the use of operators allows for clean and shorter code, slightly sweetened by syntactic sugar.

Although C++ provides implementations for operator+(int, int), operator+(double, double), operator*(int, int), and the rest, it does not provide functions for user-defined data types. However, the programmer is able to define overloaded operators for their own data types, causing the operators to act usefully on structures, classes, enums, or other user-defined types.

One useful use of overloading operators is for stream insertion, e.g. output. The commonplace “cout” (console output) object if of type “ostream” (output stream). “cout << a” calls ostream& operator<<(ostream& os, a) passing “cout” as the first argument, and a as the second. Within operator<<, os can be used as any ostream data type to provide textual representation of a user-defined data type. Chapter 13 “Address Book” Lab 1 uses this feature, allowing the entire main() body of code to consist of nothing more than:

int main()

{

apvector<ADDRESS> book;

cout << "Address Book Program" << endl;

cout << "To get the value in brackets, just press enter." << endl;

while(1)

{

cin >> book;

if (book.length() == 0) // no inputs, quit

break;

cout << book;

}

return 0;

}
Conveniently, cin >> book inputs values for the address book and cout << book outputs them in a human-readable fashion. The actual code behind the stream insertion and extraction operators remains encapsulated, hidden within normal view and thus allows code to become less cluttered than as code without operator overloading.

The first “cin >> book” line calls operator>>(istream& is, apvector<ADDRESS> book), which in turn calls operator>>(istream& is, ADDRESS addr) on every element on the line, with proper deliminations. Lab 1 written without operator overloading performs identically, but suffers from a 75-line unorganized and unreadable main() function.

Below is the complete source code of my Lab 1 Address Book program, with (lab1.cpp) and without (lab1x.cpp) operator overloading of the stream insertion and extraction operators. The version with operator overloading is much clearer, and although it requires more red tape to define the overloaded functions, the extra work pays off in the terseness and extra clarity of the main function.

Lab 1 With Operator Overloading (/chapter13/lab1/lab1.cpp)

/* Jeff Connelly

 * 05 Dec 2002

 * Address Book

 */

#include <iostream.h>

#include <apvector.h>

#include <apstring.h>

#include <stdlib.h>

struct ADDRESS

{

apstring name;

apstring address;

apstring city;

apstring state;

int zip;

apstring phone;

};

class XXX{}; // exquisite "except" exception class

istream& operator>>(istream& is, ADDRESS& addr); // iostream operators

ostream& operator<<(ostream& os, const ADDRESS& addr);

istream& operator>>(istream& is, apvector<ADDRESS>& book);

ostream& operator<<(ostream& os, apvector<ADDRESS>& book);

int main()

{

apvector<ADDRESS> book;

cout << "Address Book Program" << endl;

cout << "To get the value in brackets, just press enter." << endl;

while(1)

{

cin >> book;

if (book.length() == 0) // no inputs, quit

break;

cout << book;

}

return 0;

}

// THERE IS NOTHING OF INTEREST BELOW THIS LINE

// --cut here--

istream& operator>>(istream& is, ADDRESS& addr)

{

apstring temp;

cout << "Name [enter to quit]: ";

getline(is, addr.name);

if (!addr.name.length())

throw XXX(); // XXX marker to end of list if no input

cout << "Address [12345]: ";

getline(is, addr.address);

if (!addr.address.length())

addr.address = "12345 Noname Street"; // default street

cout << "City [Yucaipa]: ";

getline(is, addr.city);

if (!addr.city.length())

addr.city = "Yucaipa"; // default city

cout << "State code [CA]: ";

getline(is, addr.state);

if (!addr.state.length())

addr.state = "CA";

cout << "Zip code [92399]: ";

getline(is, temp);

addr.zip = atoi(temp.c_str());

if (!addr.zip)

addr.zip = 92399;

cout << "Telephone [800-555-1212]: ";

getline(is, addr.phone);

if (!addr.phone.length())

addr.phone = "800-555-1212";

return is;

}

ostream& operator<<(ostream& os, const ADDRESS& addr)

{

os << addr.name << endl

 << "\t" << addr.address << endl

 << "\t" << addr.city << ", " << addr.state << " " << addr.zip << endl

 << "\t" << addr.phone << endl;

return os;

}

// Input an entire book

istream& operator>>(istream& is, apvector<ADDRESS>& book)

{

int i = 0;

book.resize(i + 1);

while(1)

{

cout << "-- entry #" << i + 1 << "--" << endl;

try

{

cin >> book[i++];

} catch (XXX xxx) {

xxx;

book.resize(i -= 1);

break;

}

book.resize(i + 1);

}

return is;

}

// Output an entire book

ostream& operator<<(ostream& os, apvector<ADDRESS>& book)

{

for(int i = 0; i < book.length(); i++)

{

cout << i + 1 << ".\t" << book[i];

}

return os;

}

Lab 1 Without Operator Overloading (/chapter12/lab1/lab1x.cpp)

/* Jeff Connelly

 * 05 Dec 2002

 * Address Book

 */

#include <iostream.h>

#include <apvector.h>

#include <apstring.h>

#include <stdlib.h>

struct ADDRESS

{

apstring name;

apstring address;

apstring city;

apstring state;

int zip;

apstring phone;

};

class XXX{}; // exquisite "except" exception class

istream& operator>>(istream& cin, ADDRESS& addr); // iostream operators

ostream& operator<<(ostream& cout, const ADDRESS& addr);

istream& operator>>(istream& cin, apvector<ADDRESS>& book);

ostream& operator<<(ostream& cout, apvector<ADDRESS>& book);

int main()

{

apvector<ADDRESS> book;

cout << "Address Book Program" << endl;

cout << "To get the value in brackets, just press enter." << endl;

while(1)

{

int i = 0;

book.resize(i + 1);

while(1)

{

cout << "-- entry #" << i + 1 << "--" << endl;

try

{

//cin >> book[i++];

apstring temp;

cout << "Name [enter to quit]: ";

getline(cin, book[i].name);

if (!book[i].name.length())

throw XXX(); // XXX marker to end of list if no input

cout << "Address [12345]: ";

getline(cin, book[i].address);

if (!book[i].address.length())

book[i].address = "12345 Noname Street"; // default street

cout << "City [Yucaipa]: ";

getline(cin, book[i].city);

if (!book[i].city.length())

book[i].city = "Yucaipa"; // default city

cout << "State code [CA]: ";

getline(cin, book[i].state);

if (!book[i].state.length())

book[i].state = "CA";

cout << "Zip code [92399]: ";

getline(cin, temp);

book[i].zip = atoi(temp.c_str());

if (!book[i].zip)

book[i].zip = 92399;

cout << "Telephone [800-555-1212]: ";

getline(cin, book[i].phone);

if (!book[i].phone.length())

book[i].phone = "800-555-1212";

} catch (XXX xxx) {

xxx;

book.resize(i -= 1);

break;

}

book.resize(i + 1);

}

if (book.length() == 0) // no inputs, quit

break;

for(i = 0; i < book.length(); i++)

{

cout << i + 1 << ".\t";

cout << book[i].name << endl

 << "\t" << book[i].address << endl

 << "\t" << book[i].city << ", " << book[i].state << " " << book[i].zip << endl

 << "\t" << book[i].phone << endl;

}

}

return 0;

}

